Convergence Bounds for Language Evolution by Iterated Learning
نویسندگان
چکیده
Similarities between human languages are often taken as evidence of constraints on language learning. However, such similarities could also be the result of descent from a common ancestor. In the framework of iterated learning, language evolution converges to an equilibrium that is independent of its starting point, with the effect of shared ancestry decaying over time. Therefore, the central question is the rate of this convergence, which we formally analyze here. We show that convergence occurs in a number of generations that is O(n logn) for Bayesian learning of the ranking of n constraints or the values of n binary parameters. We also present simulations confirming this result and indicating how convergence is affected by the entropy of the prior distribution over languages.
منابع مشابه
Iterated Learning: A Framework for the Emergence of Language
Language is culturally transmitted. Iterated learning, the process by which the output of one individual's learning becomes the input to other individuals' learning, provides a framework for investigating the cultural evolution of linguistic structure. We present two models, based upon the iterated learning framework, which show that the poverty of the stimulus available to language learners le...
متن کاملA Bayesian view of language evolution by iterated learning
Models of language evolution have demonstrated how aspects of human language, such as compositionality, can arise in populations of interacting agents. This paper analyzes how languages change as the result of a particular form of interaction: agents learning from one another. We show that, when the learners are rational Bayesian agents, this process of iterated learning converges to the prior ...
متن کاملIterated learning and the evolution of language.
Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; a...
متن کاملLanguage Evolution by Iterated Learning With Bayesian Agents
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute a posterior distribution over languages by combi...
متن کاملThe evolution of frequency distributions: relating regularization to inductive biases through iterated learning.
The regularization of linguistic structures by learners has played a key role in arguments for strong innate constraints on language acquisition, and has important implications for language evolution. However, relating the inductive biases of learners to regularization behavior in laboratory tasks can be challenging without a formal model. In this paper we explore how regular linguistic structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009